Rover's Development of the Jet Engine.

By Kevin Phillips

Shortly after the start of the war, Spencer Wilks had been approached by government ministers and asked to give support to a radically new and very secret development - Frank Whittle's Gas Turbine 'Jet' Engine Project. The concept was totally new and an entirely different venture for Rover. This project was so top secret that the British Government, being terrified of security leaks, instructed Rover and all other people involved in the work to refer to Whittle's invention as a 'supercharger'.

Whittle's little company, 'Power Jets Ltd', was based in a foundry in Lutterworth, 16 miles from Coventry. They were the world's leaders in turbo-jet design, but the first Whittle-jet engine flight would not take place until 1941.

Power Jets at Lutterworth was purely an experimental workshop and the pilot-build plant at Whetstone, near Leicester would not be established until much later in the war. Parts for Whittle Jets were supplied mainly from The British Thomson Houston Company in Rugby, who built large industrial turbines, and from Joseph Lucas in Birmingham.

Rover's involvement was to develop a Whittle design to production stage, and would later begin manufacture of jet engines for the RAF. Glouster Aircraft was designing the first jet fighter, which later became known as the Meteor'. Rover was already associated with Glouster Aircraft as they were building Albemarle airframes for them.

Work started in early 1940 but before long there was serious personality clashes between Frank Whittle and Rover engineers. Although Rover was improving the initial design, Whittle could not accept that his designs in both detail and basic concept were being altered.

By November 1940 Rover's work was considered of vital importance and from that point onwards there was no doubt that improvement and proving of the Whittle machine was of great national importance. The German Luftwaffe's attempt at obliterating Coventry's industrial area on the night of 14th/15th November had reinforced the decision to implement dispersal of production with manufacture being transferred to Clitheroe and Barnoldswick. Bankfield Shed at Barnoldswick had been a serious player in the textile industry, but had been closed in the gloomy days of the 1930's textile trade depression. Later Barnoldswick would become even more famous in Rolls Royce hands and today, modern Rolls Royce engines such as the RB2ll, carry the designation 'RB' for Rolls Royce Barnoldswick.

The first development engines were virtually unchanged from Whittle's 'W2' design, but used Rover's expertise for the accessory drives. There was serious trouble from surging and the failure of turbine blades, and the 'W2' proved to be seriously underpowered.

Rover was then asked to go ahead with development around Whittle's 'W2B' design which meant that they would undertake considerable mechanical design of their own. Misunderstandings and the difficult atmosphere between Whittle's firm 'Power Jets' and Rover deteriorated even further with Rover's development of the 'W2B'. Whittle himself became furious when the first Rover-built 'W2B's were running in the Lancashire factories in October 1941. This was due to the many design changes that Rover had made to his firm's original design layout for the 'W2B' Jet engine.

With the apparent success of the 'W2B', Rover were asked to plan for quantity production at Clitheroe and Barnoldswick, but Rover's engine designers had reached the conclusion that Whittle's WI' and W2' engines were aerodynamically inefficient because of the counter-flow arrangement of compressors, combustion canisters and turbines.

Due to this, Rover received permission to begin design of a new engine having a different layout concept, to be known as the 'B26'. This new project was top secret; so secret in fact that even Frank Whittle would not be informed about it. Rover's 'B26' would be a straight through design but would retain the best of the original centrifugal compressor layout. The prototype B26' ran for the first time in November 1942, and almost immediately showed a great improvement in thrust and reliability.

In August of 1942 one of the Whittle-type 'W2B's had been installed in the tail of a Wellington Bomber, and was test flown from the Rolls Royce flight test field at Hucknall, near Nottingham. At this stage more than 30 engines of this type, mainly developments of 'WB2's had been built and a government decision was about to be made on quantity production of gas turbine engines. The aircraft manufacturer Glouster was now ready to begin manufacture of their 'Meteor' fighter planes, and these would become the first 'Jet Fighter' aircraft.

Rolls Royce now started to take an interest in this new technology. Originally when first approached by the British Government, they had said they were far too busy to get involved in this new technology, and instead became committed to producing the 'Merlin' V-l2 aero engine. These legendary 'Merlin' engines would go on to become an essential part of Britain's air defence and would play a major role in the air war against the Luftwaffe, and the RAF's ultimate victory during the Battle of Britain.

Even though Rolls Royce were fully committed to the manufacture of piston engines, they could not help but be intrigued by Rover's gas turbine jet developments, and decided to take a serious interest once the test flights of the 'Wellington Bomber' had proved a success. They quickly announced that as a matter of policy they would now like to become involved in gas turbine engine development. With their obvious commitment to successful aero engine development this new policy had to be taken seriously by the British Government.

At the same time the Rover management, while acknowledging their continued success with the new technology gas turbine engines, did not wish to move on to continued development of aircraft engines on a permanent basis.

The solution was a masterly compromise which would see Rover hand over their gas turbine development work to Rolls Royce, receiving in return from Rolls Royce a large and vital tank engine contract. Rover took over the entire Rolls Royce 'Meteor' engine project which was a brilliantly advanced piston engine design.This consisted of a much modified but un-supercharged version of the V-12 'Merlin' aircraft engine, and would be produced for the latest heavy allied tanks.

This engine became the most powerful piston engine with which Rover has ever been associated, and developed something like 700 BHP, all very necessary when the incredible weight of the tank is taken into account. This engine was further developed and in Mark IV version, sprang to prominence in the world famous 'Centurion' tank. Later fuel injected M120 versions powered the bigger and more impressive 'Conqueror' tanks.

Later a development from the 'Meteor' was the 'Meteorite' engine range, which was essentially two thirds of a 'Meteor', being a V-8 while the 'Meteor' was a V-12. Meteorites were developed during the late 1940's and were built in both petrol and diesel engine forms for vehicles, for marine use and for use as stationary power units. The mighty 'Antar' tank transporter, built by Thornycroft, was powered by a 'Meteorite', and was often seen dragging 'Meteor' engined tanks around the world.

From the end of hostilities Rover's Acocks Green factory had been designated as the home of 'Fighting Vehicle Engine Research', and this association with the defence ministries carried on for 21 continuous years into 1964, the work always being centred at Acocks Green.

Rover's wartime activities were vast and although the gas turbine engine projects were a crucial development, it must be remembered that the aircraft construction work was vital to the defence of Britain. Hundreds of 'Radial' piston engines and 'Meteor's poured out of the 'Shadow Factories', and thousands of airframe parts were built in the damaged Helen Street works. Not to be forgotten are the army webbing contracts completed at Hinkley, the overhaul and repair of aircraft magnetos at Lutterworth, vehicle body manufacture, and the building of aero engine test stands at the London Seagrave Road service buildings.

By 1944 it became obvious that an end to the hostilities was in sight, and the company was able to look ahead towards car production once again. The question was which model and where would it be built? There were no new models on the drawing board and the Helen Street premises were still badly damaged. Rover's staff members were dispersed throughout several factories and the company was now a much larger concern than ever before.

Rover Turbine
The Rover Gas Turbine Engine.

Post war conditions would be vastly different from the 1930's and the big question now was just what kind of demand would there be for Rover's type of quality middle class and reliable cars? Spencer Wilks was not at all sure just what would await him in peacetime, but as usual, he was looking forward to the challenge.